Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Transplant Proc ; 55(5): 1283-1288, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2315849

ABSTRACT

BACKGROUND: Patients who have performed solid organ transplantation in terms of COVID-19 infection are included in the high-risk group. In this study, it was aimed to evaluate the relationship between vaccination and retrospective evaluation of 32 patients who underwent a heart transplant in the clinic and tested positive for SARS-CoV-2 polymerase chain reaction. METHODS: In this study, demographic characteristics of the cases, comorbidities, timing of heart transplantation, immunosuppressive treatments, symptoms of COVID-19 infection, lung imaging findings, follow-up (outpatient/inpatient), treatments, 1-month mortality, and vaccination histories against COVID-19 infection were evaluated. The data obtained from the study were analyzed with SPSS version 25.0. RESULTS: The 3 most common symptoms are cough (37.5%), myalgia (28.1%), and fever (21.8%). COVID-19 infection was severe in 6.2% of the patients, moderate in 37.5%, and mild in 56.2%. Hospitalization was required in 5 patients (15.6%, 1 in the intensive care unit), and the other patients were followed up as an outpatient. Severe COVID-19 infection was seen more in 33% of unvaccinated patients; 93.5% were vaccinated. Nineteen patients (68%) were vaccinated before COVID-19 infection. Our patients received the CoronoVac (Sinovac, China) vaccine. CONCLUSION: COVID-19 infection is more likely to be severe and mortal in patients with heart transplant recipients. It is also crucial to comply with preventive measures other than immunization in this group of patients. This study is the largest series investigating COVID-19 infection in heart transplant recipient patients in our country.


Subject(s)
COVID-19 Vaccines , COVID-19 , Heart Transplantation , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Heart Transplantation/adverse effects , Outpatients , Retrospective Studies , SARS-CoV-2 , Transplant Recipients
2.
Pediatr Cardiol ; 2022 Aug 02.
Article in English | MEDLINE | ID: covidwho-2238791

ABSTRACT

Multisystem Inflammatory Syndrome (MIS-C) is a new entity that emerges 2-4 weeks after the SARS-CoV-2 infection in children. MIS-C can affect all systems, the most severe of which is cardiac involvement. The duration of the cardiac symptoms is still uncertain and may be persistent or prolonged. The American College of Rheumatology Clinical Guidelines recommends cardiac magnetic resonance imaging (MRI) 2-6 months after the diagnosis of MIS-C in patients presenting with significant transient left ventricular (LV) dysfunction in the acute phase of illness (LV ejection fraction 50%) or persistent LV dysfunction. There are a few studies investigating cardiac MRI findings in MIS-C patients. In this study, we aimed to evaluate cardiac MRI findings, at the earliest 3 months after diagnosis, and compare these findings with the echocardiograms in children with MIS-C. A retrospective study including 34 MIS-C patients was conducted at a tertiary-level University Hospital between June 2020 and July 2021. Centers for Disease Control and Prevention criteria were used in the diagnosis of MIS-C. Cardiac MRI was performed at least 3 months after MIS-C diagnosis. The study included 17 (50%) boys and 17 (50%) girls with a mean age of 9.31 ± 4.72 years. Initial echocardiographic evaluation revealed cardiac abnormality in 13 (38.2) patients; 4 (11.8%) pericardial effusion, 4 (11.8%) left ventricular ejection fraction (LVEF) < 55%, and 5 (14.7%) coronary artery dilatation. Echocardiography showed normal LV systolic function in all patients during follow-up; coronary dilatation persisted in 2 of 5 (40%) patients at the 6th-month visit. Cardiac MRI was performed in 31 (91.2%) patients, and myocardial hyperemia was not detected in any patients (T1 relaxation time was < 1044 ms in all children). However, 9 (29%) patients' MRI showed isolated elevated T2 levels, and 19 (61.3%) revealed at least one of the following findings: pericardial effusion, right ventricular dysfunction, or LVEF abnormality. In patients with MIS-C, a high rate of cardiac involvement, particularly pericardial effusion was determined by cardiac MRI performed at the earliest 2-6 months after diagnosis. Even if echocardiography does not reveal any abnormality in the initial phase, cardiac MRI should be suggested in MIS-C patients in the late period. This is the first study reporting cardiac MRI findings in the late period of MIS-C patients.

3.
J Trop Pediatr ; 69(1)2022 12 05.
Article in English | MEDLINE | ID: covidwho-2227674

ABSTRACT

BACKGROUND: Pediatric patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) displayed milder symptoms than adults. However, they play an important role in case numbers and virus transmission. Therefore, we aimed to determine the epidemiological features of all pediatric patients infected with SARS-CoV-2 and put forth case numbers longitudinally throughout the delta variant dominant period. METHODS: A retrospective study was conducted at a university hospital and included patients between 0 and18 years old with a SARS-CoV-2 polymerase chain reaction (PCR) positive result, including inpatients and outpatients. Epidemiological and clinical features were recorded from electronic files, and telephone visits were performed between March 2020 and December 2021. RESULTS: During the study period, 3175 coronavirus disease 2019 (COVID-19) pediatric patients were admitted to our hospital with a mean age of 10.61 ± 4.6 years. Of the 1815 patients who could be interviewed, 85.7% reported at least one symptom. Before the delta variant period, 0-4 years aged children were more commonly infected, while school-aged children and adolescents were more common, and the rate of pediatric cases to all COVID-19 cases increased to 35.8% after the delta variant became dominant. Symptomatic cases were significantly higher before the delta variant (87.8% vs. 84.06%, p = 0.016). The hospitalization rate was higher before the delta variant (p < 0.001), whereas PICU admission showed no statistical difference. CONCLUSIONS: The frequency of school-aged children and adolescents raised with the impact of both school openings and the delta variant, and the rate of pediatric cases increased in total COVID-19 patient numbers.


Subject(s)
COVID-19 , Adolescent , Adult , Humans , Child , Aged , COVID-19/epidemiology , SARS-CoV-2/genetics , Retrospective Studies , Hospitals, University
4.
Infection ; 2022 May 05.
Article in English | MEDLINE | ID: covidwho-2228987

ABSTRACT

Molecular diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by real-time reverse transcription polymerase chain reaction (RT-PCR) in respiratory specimens is considered the gold standard method. This method is highly sensitive and specific but it has some limitations such as being expensive and requiring special laboratory equipment and skilled personnel. RapidFor™ Antigen Rapid Test Kit is a commercially available Ag-RDT which is produced in Turkey and designed to detect the nucleocapsid antigen of SARS-CoV-2 in nasopharyngeal swab samples. The aim of this study was to evaluate the performance of this novel SARS-CoV-2 antigen detection considering the RT-PCR method as the gold standard. Four hundred forty-four nasopharyngeal swab samples which were collected from the patients who met clinical criteria of COVID-19 from ten centers in Turkey between September 2020 and February 2021 were included in the study. All the nasopharyngeal swab samples were tested for SARS-CoV-2 RNA using commercial RT-PCR kits (Bioeksen and A1 Lifesciences, Istanbul, Turkey) according to the manufacturer's instructions. Viral loads were assessed according to the cycle threshold (Ct) values. RapidFor™ SARS-CoV-2 antigen test (Vitrosens Biotechnology, Istanbul, Turkey) was used to investigate the presence of SARS-CoV-2 antigen in all samples following the manufacturer's instructions. Out of 444 nasopharyngeal swab samples tested, 346 (77.9%) were positive and 98 (22.1%) were negative for SARS-CoV-2 RNA by RTPCR. Overall sensitivity of the RapidFor™. Antigen Rapid Test Kit was 80.3% whereas specificity was found to be 87.8%. Positivity rate of rapid antigen test in samples with Ct values over 25 and below 30 was 82.7%, while it increased to 95.7% in samples 20 ≤ Ct < 25 and reached 100% in samples with Ct values below 20. RapidFor™ SARS-CoV-2 Ag test might be a good choice in the screening of symptomatic and asymptomatic patients and their contacts for taking isolation measures early, with advantages over RT-PCR as being rapid, easy and being applicable in every laboratory and even at point of care.

5.
Viral Immunol ; 35(10): 681-689, 2022 12.
Article in English | MEDLINE | ID: covidwho-2188181

ABSTRACT

The majority of children with coronavirus diseases 2019 (COVID-19) are asymptomatic or develop mild symptoms, and a small number of patients require hospitalization. Multisystem inflammatory syndrome in children (MIS-C) is one of the most severe clinical courses of COVID-19 and is suggested to be a hyperinflammatory condition. This study aimed to compare quantitative antibody levels against SARS-CoV-2 spike protein in children with COVID-19 and MIS-C. Blood samples from 75 patients [n = 36 (48%) with mild/asymptomatic (group 1), n = 22 (29.3%) with moderate-to-severe SARS-CoV-2 infection (group 2) and n = 17 (22.6%) patients with MIS-C (group 3)] were analyzed 3 months after COVID-19. The majority of the children with asymptomatic/mild COVID-19 symptoms (80.6%), moderate/severe disease (90.9%), and MIS-C (82.4%) had detectable IgG antibodies to SARS-CoV-2 spike protein (p = 0.567). The mean antibody value against SARS-CoV-2 spike protein was 321.9 ± 411.6 in group 1, 274 ± 261 in group 2, and 220 ± 299 in group 3, respectively (p > 0.05). Patients diagnosed with COVID-19 (asymptomatic/mild+moderate/severe) and those with MIS-C were also compared; the antibody positivity rates [COVID-19 group: 85.5%, MIS-C group: 82.4%, (p = 0.833)] and mean antibody values [COVID-19 group: 303.9 ± 360.3, MIS-C group: 220 ± 299, (p > 0.05)] were similar in both groups. In conclusion, the majority of children with COVID-19 and MIS-C developed a detectable antibody level against SARS-CoV-2 spike protein 3 months after COVID-19. Quantitative antibody levels were similar in both asymptomatic/mild disease, moderate/severe disease, and MIS-C group. Long-term studies evaluating antibody responses in children with COVID-19 and MIS-C are needed for more accurate vaccine schedules.


Subject(s)
Antibodies, Viral , COVID-19 , Spike Glycoprotein, Coronavirus , Child , Humans , COVID-19/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/blood
6.
Biosens Bioelectron X ; 10: 100105, 2022 May.
Article in English | MEDLINE | ID: covidwho-1944330

ABSTRACT

Point of care (PoC) devices are highly demanding to control current pandemic, originated from severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Though nucleic acid-based methods such as RT-PCR are widely available, they require sample preparation and long processing time. PoC diagnostic devices provide relatively faster and stable results. However they require further investigation to provide high accuracy and be adaptable for the new variants. In this study, laser-scribed graphene (LSG) sensors are coupled with gold nanoparticles (AuNPs) as stable promising biosensing platforms. Angiotensin Converting Enzyme 2 (ACE2), an enzymatic receptor, is chosen to be the biorecognition unit due to its high binding affinity towards spike proteins as a key-lock model. The sensor was integrated to a homemade and portable potentistat device, wirelessly connected to a smartphone having a customized application for easy operation. LODs of 5.14 and 2.09 ng/mL was achieved for S1 and S2 protein in the linear range of 1.0-200 ng/mL, respectively. Clinical study has been conducted with nasopharyngeal swabs from 63 patients having alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2) variants, patients without mutation and negative patients. A machine learning model was developed with accuracy of 99.37% for the identification of the SARS-Cov-2 variants under 1 min. With the increasing need for rapid and improved disease diagnosis and monitoring, the PoC platform proved its potential for real time monitoring by providing accurate and fast variant identification without any expertise and pre sample preparation, which is exactly what societies need in this time of pandemic.

7.
J Trop Pediatr ; 68(3)2022 04 05.
Article in English | MEDLINE | ID: covidwho-1860907

ABSTRACT

BACKGROUND: Studies on age-related differences in clinical and laboratory features of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are limited. We aimed to evaluate the demographic, clinical, laboratory findings of SARS-CoV-2 infection in children younger than 6 months old and compare them with older children. METHODS: A single-center retrospective study, including 209 confirmed SARS-CoV-2 infection cases, was conducted between 11 March 2020 and 1 September 2021. The case group consisted of 47 patients younger than 6 months old, whereas the control group consisted of 162 patients older than 6 months old. RESULTS: The mean age of the case group was 2.77 ± 1.52 months, and the control group was 101.89 ± 65.77 months. Cough was statistically higher in the control group, and poor feeding was higher in the case group (p = 0.043, 0.010). The underlying disease rate was statistically higher in the control group; however, the hospitalization rate was higher in the case group (p = 0.036, 0.001). The case group had significantly lower median values of the absolute neutrophil count, hemoglobin and higher median values of white blood cell, absolute lymphocyte count and platelet than the control group (p < 0.05). C-reactive protein, fibrinogen values were significantly lower, and procalcitonin, D-dimer, troponin T, N-terminal pro-B-type natriuretic peptide significantly higher in the case group (p < 0.05). Lymphopenia was more common in the control group, whereas neutropenia was more common in the case group (p = 0.001, 0.011). CONCLUSIONS: We showed that most children younger than 6 months old had mild and asymptomatic SARS-CoV-2 infection; however, the hospitalization rate was higher, and neutropenia was more common in older children. Lay summaryStudies on age-related differences in clinical and laboratory features on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in pediatric patients are limited. We aimed to evaluate the demographic, clinical and laboratory findings of SARS-CoV-2 infection in children younger than 6 months old and compare them with older children. A single-center retrospective study was conducted, including 209 SARS-CoV-2 infection cases. The case group consisted of 47 patients younger than 6 months old, and the control group consisted of 162 patients older than 6 months old. Most children younger than 6 months old had mild and asymptomatic SARS-CoV-2 infection; however, the hospitalization rate was higher than older children. Neutropenia was more common in patients younger than 6 months than older children with SARS-CoV-2 infection, even if underlying diseases were excluded.


Subject(s)
COVID-19 , Lymphopenia , Neutropenia , Adolescent , COVID-19/diagnosis , Child , Humans , Infant , Neutropenia/epidemiology , Retrospective Studies , SARS-CoV-2
8.
Mikrochim Acta ; 189(5): 202, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1850343

ABSTRACT

The construction of a rapid and easy immunofluorescence bioassay for SARS-CoV-2 detection is described. We report for the first time a novel one-pot synthetic approach for simultaneous photoinduced step-growth polymerization of pyrene (Py) and ring-opening polymerization of ε-caprolactone (PCL) to produce a graft fluorescent copolymer PPy-g-PCL that was conjugated to SARS-CoV-2-specific antibodies using EDC/NHS chemistry. The synthesis steps and conjugation products were fully characterized using standard spectral analysis. Next, the PPy-g-PCL was used for the construction of a dot-blot assay which was calibrated for applications to human nasopharyngeal samples. The analytical features of the proposed sensor showed a detection range of 6.03-8.7 LOG viral copy mL-1 (Ct Scores: 8-25), the limit of detection (LOD), and quantification (LOQ) of 1.84 and 6.16 LOG viral copy mL-1, respectively. The repeatability and reproducibility of the platform had a coefficient of variation (CV) ranging between 1.2 and 5.9%. The fluorescence-based dot-blot assay was tested with human samples. Significant differences were observed between the fluorescence intensity of the negative and positive samples, with an overall correct response of 93.33%. The assay demonstrated a high correlation with RT-PCR data. This strategy opens new insights into simplified synthesis procedures of the reporter molecules and their high potential sensing and diagnosis applications.


Subject(s)
COVID-19 , SARS-CoV-2 , Biological Assay , COVID-19/diagnosis , Caproates , Coloring Agents , Humans , Lactones , Poly A , Polyesters , Polymerization , Reproducibility of Results
9.
Talanta ; 243: 123356, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1778464

ABSTRACT

The increasing mutation frequency of the SARS-CoV-2 virus and the emergence of successive variants have made correct diagnosis hard to perform. Developing efficient and accurate methods to diagnose infected patients is crucial to effectively mitigate the pandemic. Here, we developed an electrochemical immunosensor based on SARS-CoV-2 antibody cocktail-conjugated magnetic nanoparticles for the sensitive and accurate detection of the SARS-CoV-2 virus and its variants in nasopharyngeal swabs. The application of the antibody cocktail was compared with commercially available anti-SARS-CoV-2 S1 (anti-S1) and anti-S2 monoclonal antibodies. After optimization and calibration, the limit of detection (LOD) determination demonstrated a LOD = 0.53-0.75 ng/mL for the antibody cocktail-based sensor compared with 0.93 ng/mL and 0.99 ng/mL for the platforms using anti-S1 and anti-S2, respectively. The platforms were tested with human nasopharyngeal swab samples pre-diagnosed with RT-PCR (10 negatives and 40 positive samples). The positive samples include the original, alpha, beta, and delta variants (n = 10, for each). The polyclonal antibody cocktail performed better than commercial anti-S1 and anti-S2 antibodies for all samples reaching 100% overall sensitivity, specificity, and accuracy. It also showed a wide range of variants detection compared to monoclonal antibody-based platforms. The present work proposes a versatile electrochemical biosensor for the indiscriminate detection of the different variants of SARS-CoV-2 using a polyclonal antibody cocktail. Such diagnostic tools allowing the detection of variants can be of great efficiency and economic value in the fight against the ever-changing SARS-CoV-2 virus.


Subject(s)
Biosensing Techniques , COVID-19 , Magnetite Nanoparticles , COVID-19/diagnosis , Humans , Immunoassay , SARS-CoV-2/genetics
10.
Anal Bioanal Chem ; 413(29): 7251-7263, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1460298

ABSTRACT

Supply shortage for the development and production of preventive, therapeutic, and diagnosis tools during the COVID-19 pandemic is an important issue affecting the wealthy and poor nations alike. Antibodies and antigens are especially needed for the production of immunological-based testing tools such as point-of-care tests. Here, we propose a simple and quick magnetic nanoparticle (MNP)-based separation/isolation approach for the repurposing of infected human samples to produce specific antibodies and antigen cocktails. Initially, an antibody cocktail was purified from serums via precipitation and immunoaffinity chromatography. Purified antibodies were conjugated onto MNPs and used as an affinity matrix to separate antigens. The characterization process was performed by ELISA, SDS-PAGE, electrochemistry, isothermal titration calorimetry, and LC-Q-TOF-MS/MS analyses. The MNP-separated peptides can be used for mass spectrometry-based as well as paper-based lateral flow assay diagnostic. The exploitation of the current workflow for the development of efficient diagnostic tools, specific treatments, and fundamental research can significantly impact the present or eventual pandemic. This workflow can be considered as a two birds, one stone-like strategy.


Subject(s)
Antibodies, Viral/isolation & purification , Antigens, Viral/isolation & purification , COVID-19/diagnosis , Cost-Benefit Analysis , Immunoassay/economics , SARS-CoV-2/isolation & purification , Viremia/virology , Antibodies, Viral/blood , Antigens, Viral/blood , COVID-19/virology , Calorimetry , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , SARS-CoV-2/immunology , Specimen Handling , Tandem Mass Spectrometry , Viremia/blood , Workflow
11.
ACS Sens ; 6(8): 2988-2997, 2021 08 27.
Article in English | MEDLINE | ID: covidwho-1316701

ABSTRACT

The global pandemic of COVID-19 continues to be an important threat, especially with the fast transmission rate observed after the discovery of novel mutations. In this perspective, prompt diagnosis requires massive economical and human resources to mitigate the disease. The current study proposes a rational design of a colorimetric lateral flow immunoassay (LFA) based on the repurposing of human samples to produce COVID-19-specific antigens and antibodies in combination with a novel dye-loaded polymersome for naked-eye detection. A group of 121 human samples (61 serums and 60 nasal swabs) were obtained and analyzed by RT-PCR and ELISA. Pooled samples were used to purify antibodies using affinity chromatography, while antigens were purified via magnetic nanoparticles-based affinity. The purified proteins were confirmed for their specificity to COVID-19 via commercial LFA, ELISA, and electrochemical tests in addition to sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Polymersomes were prepared using methoxy polyethylene glycol-b-polycaprolactone (mPEG-b-PCL) diblock copolymers and loaded with a Coomassie Blue dye. The polymersomes were then functionalized with the purified antibodies and applied for the preparation of two types of LFA (antigen test and antibody test). Overall, the proposed diagnostic tests demonstrated 93 and 92.2% sensitivity for antigen and antibody tests, respectively. The repeatability (92-94%) and reproducibility (96-98%) of the tests highlight the potential of the proposed LFA. The LFA test was also analyzed for stability, and after 4 weeks, 91-97% correct diagnosis was observed. The current LFA platform is a valuable assay that has great economical and analytical potential for widespread applications.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Testing , Humans , Reproducibility of Results
12.
Biosens Bioelectron ; 192: 113484, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1293597

ABSTRACT

Real-time reverse transcriptase-polymerase chain reaction (RT-PCR)-based assays are the gold standard for virus diagnosis. Point-of-care (POC) technologies have shown great progress during this period. Herein, we propose a novel fuchsine dye-loaded polymersome for a colorimetric paper-based dot blot spike protein diagnostic assay for COVID-19 via smartphone-assisted sensing. The prepared platform aimed to create an adaptable tool that competes with traditional nanoparticle-based assays employing gold and silver. Analytical characterization and application of the testing platform showed high sensitivity (10 times better than gold nanoparticles), stability, fast turnaround, and reproducibility. The potential and possibilities demonstrated by the current platform could be observed in its adaptability for different markers and pathologies. In addition, smartphone-assisted sensing emphasizes the ability to use the tool at home by common peoples which can lower the burden on the healthcare facilities and reach more underdeveloped regions.


Subject(s)
Biosensing Techniques , COVID-19 , Spike Glycoprotein, Coronavirus/analysis , COVID-19/diagnosis , Gold , Humans , Metal Nanoparticles , Reproducibility of Results , Rosaniline Dyes , SARS-CoV-2 , Sensitivity and Specificity
13.
Anal Chem ; 93(24): 8585-8594, 2021 06 22.
Article in English | MEDLINE | ID: covidwho-1253862

ABSTRACT

The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has revealed the urgent need for accurate, rapid, and affordable diagnostic tests for epidemic understanding and management by monitoring the population worldwide. Though current diagnostic methods including real-time polymerase chain reaction (RT-PCR) provide sensitive detection of SARS-CoV-2, they require relatively long processing time, equipped laboratory facilities, and highly skilled personnel. Laser-scribed graphene (LSG)-based biosensing platforms have gained enormous attention as miniaturized electrochemical systems, holding an enormous potential as point-of-care (POC) diagnostic tools. We describe here a miniaturized LSG-based electrochemical sensing scheme for coronavirus disease 2019 (COVID-19) diagnosis combined with three-dimensional (3D) gold nanostructures. This electrode was modified with the SARS-CoV-2 spike protein antibody following the proper surface modifications proved by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) characterizations as well as electrochemical techniques. The system was integrated into a handheld POC detection system operated using a custom smartphone application, providing a user-friendly diagnostic platform due to its ease of operation, accessibility, and systematic data management. The analytical features of the electrochemical immunoassay were evaluated using the standard solution of S-protein in the range of 5.0-500 ng/mL with a detection limit of 2.9 ng/mL. A clinical study was carried out on 23 patient blood serum samples with successful COVID-19 diagnosis, compared to the commercial RT-PCR, antibody blood test, and enzyme-linked immunosorbent assay (ELISA) IgG and IgA test results. Our test provides faster results compared to commercial diagnostic tools and offers a promising alternative solution for next-generation POC applications.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Point-of-Care Systems , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Gold , Humans , Lasers , Nanostructures , SARS-CoV-2 , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL